Version 3.0 Mai 2006

dV-DOSC dV-SUB MANUEL UTILISATEUR VERSION COURTE

PRELIMINAIRE

Ce manuel vous donnera les informations nécessaires à la mise en œuvre du système dV-DOSC.

ORGANISATION DU MANUEL

- Le chapitre I décrit les éléments constitutifs du système dV-DOSC
- Le chapitre 2 présente les procédures d'installation du dV-DOSC
- Le chapitre 3 décrit les procédures de maintenance

Les certificats de conformité sont disponibles en annexe.

TABLE DES MATIERES

PRELIMINAIRE	2
I. LE STANDARD dV-DOSC	5
I.I COMPOSITION DU SYSTEME dV-DOSC	8
I.2 VUE D'ENSEMBLE D'UN SYSTEME dV-DOSC	
I .3 AMPLIFICATION D'UN SYSTEME dV-DOSC	18
I .4 AMPLIFICATION DES ENCEINTES SUB-GRAVES	20
I .5 RACKS D'AMPLIFICATEURS dV-DOSC	21
1.6 CONNECTEURS COMB	
1.7. FILTRAGE DU dV-DOSC	25
2. PROCEDURES D'INSTALLATION	27
2.1 ACCROCHAGE DU SYSTEME	27
3. PROCEDURES DE MAINTENANCE	37
3.1 OUTILS RECOMMANDES POUR LA MAINTENANCE	
3.2 PIECES DETACHEES	37
3. 3 OUTILS POUR L'INSTALLATION	38

FIGURES

Figure 1: Configuration dV-DOSC 3-voies	6
Figure 2: Configuration dV-DOSC 4-voies	7
Figure 3: dV-DOSC plus accessoires	8
Figure 4: Accastillage du dV-DOSC	9
Figure 5: Eléments sub-graves	10
Figure 6: Accastillage sub-grave	
Figure 7: Amplificateurs de puissance L-ACOUSTICS LA24a, LA48a	11
Figure 8: Options et accessoires des racks d'amplificateurs	13
Figure 9: Distribution du signal et câblage	15
Figure 10: Câbles d'enceintes	
Figure II: Enceinte dV-DOSC Vue avant et arrière	
Figure 12: Ligne source à base de dV-DOSC	
Figure 13 : Commutateurs MLS situés à l'arrière des amplificateurs LA24a et LA8a	19
Figure 14: Rack d'amplificateurs L-ACOUSTICS RK12-4	
Figure 15: Racks d'amplificateurs L-ACOUSTICS	22
Figure 16: Connecteur COMB 3-WAY pour le dV-DOSC	23
Figure 17: Configurations possibles d'un RK122a et options de câblage	24
Figure 18 : Configuration d'un rack RK I 22a et options de câblage pour un système 2 voie	S
stéréo	25
Figure 19 : Configuration d'un rack RK122a et options de câblage pour un système 3 voie	S
stéréostéréo	25
Figure 20: Accroche d'un cluster de dV-DOSC avec un dV-BUMP (ou dV-BUMP2)	31
Figure 21: Accrochage du dV-DOSC en-dessous du dV-SUB (procédure 1)	33
Figure 22: Accrochage du dV-DOSC en-dessous du dV-SUB (procédure 2)	35
Figure 23: Outils recommandés pour l'installation du dV-DOSC	39
Figure 24: Enceinte dV-DOSC	
Figure 25: dV-BUMP	41
Figure 26: dV-SUB	42
TABLEAUX	
Tableau I : Charge et puissance requises pour le dV-DOSC	١Q
Tableau 2 : Spécifications des amplificateurs de puissance L-ACOUSTICS LA24a et LA48a	
Tableau 3: SB118	
Tableau 4: dV-SUB	
Tableau 5: SB218	
Tableau 6: Charte d'accrochage sur I point moteur	
Tableau 7: Nombre maximum d'enceintes accrochables lors de l'utilisation de la barre	Ј⊤
d'extension	36
Tableau 8: Nombre maximum d'enceintes accrochables	50
lors de l'utilisation de la barre centrale du dV-BUMP seul	36
Tableau 9: Outils recommandés pour la maintenance	
rabicad 7. Oddis recommandes pour la maintenance	57

I. LE STANDARD dV-DOSC

Le système dV-DOSC est un système de sonorisation de façade complet, composé d'enceintes dV-DOSC, dV-SUB et/ou SB218 ou SB118, de racks d'amplification avec les amplificateurs L-ACOUSTICS LA24a ou LA48a, d'unités de traitement du signal et d'égalisation contenant les presets L-ACOUSTICS, de patchs amplificateurs PADO2a ou PADO4a, des panneaux de distribution CO6 ou CO24/MD24, de pièces d'accrochage (incluant les BUMPER), et du câblage nécessaire à tous les éléments.

Les avantages du standard L-ACOUSTICS sont :

- Compatibilité : possibilité de combiner des locations ;
- Système immédiatement opérationnel (pas besoin de réaliser les patchs, de configurer les racks...);
- Contrôle qualité;
- Expérience commune partagée par l'ensemble des CVE et/ou QVT ;
- Performances du système dV-DOSC constantes à travers le monde.

Le système dV-DOSC ne comprend ni les moteurs, ni la distribution électrique, ni les équipements de mélange et de traitements situés en amont du système.

NOTE: Les systèmes dV-DOSC qui ne respectent pas ce standard ne sont pas approuvés par L-ACOUSTICS. Dans ce cas, L-ACOUSTICS décline toute responsabilité en cas de mauvais fonctionnement du système et la garantie peut-être annulée dans certains cas.

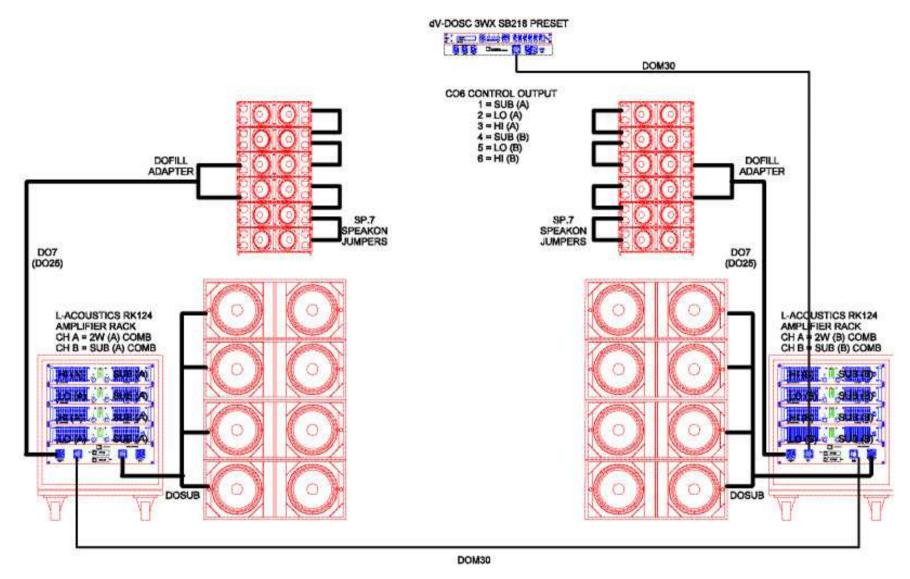


Figure 1: Configuration dV-DOSC 3-voies

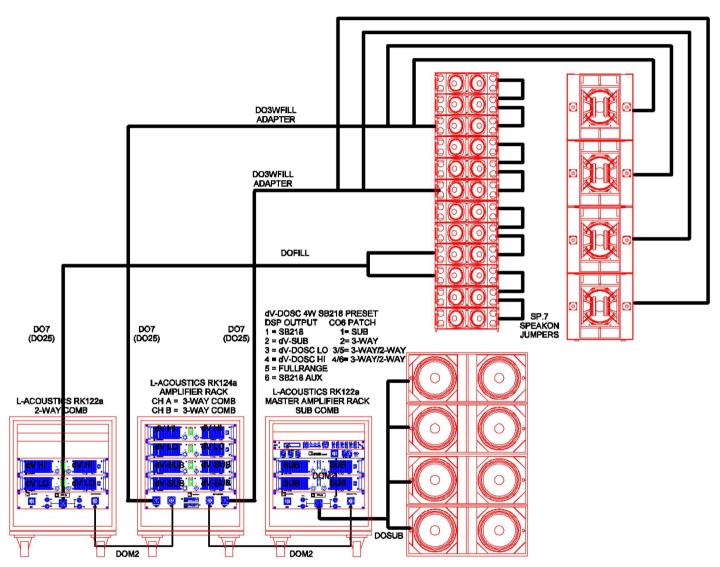


Figure 2: Configuration dV-DOSC 4-voies

I.I COMPOSITION DU SYSTEME dV-DOSC

ENCEINTES

dV-DOSC

Enceinte active 2 voies respectant les critères de la technologie WST, avec un arrangement coplanaire symétrique des transducteurs.

FLIGHT-dV

Flight case pour le transport de trois enceintes dV-DOSC.

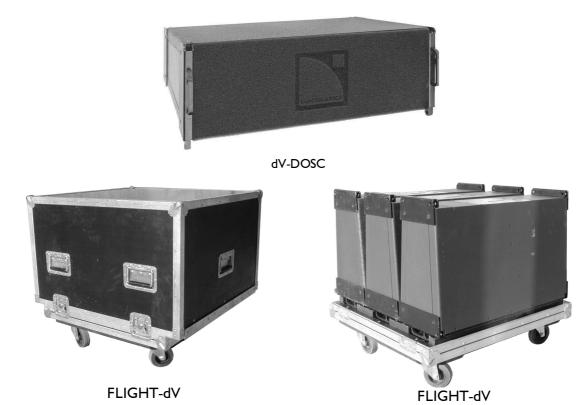


Figure 3: dV-DOSC plus accessoires

ACCESSOIRES D'ACCROCHAGE

dV-BUMP

Structure d'accrochage pour suspendre ou empiler les enceintes dV-DOSC et/ou dV-SUB. Associé avec le BUMP2 du V-DOSC (Cf. Manuel d'utilisation V-DOSC), il peut être utilisé pour poser le dV-DOSC au sol ou sur le V-DOSC.

dV-BUMP2

Structure d'accrochage alternative pour suspendre ou empiler les enceintes dV-DOSC et/ou dV-SUB. Le dV-BUMP2 permet également d'accrocher du dV-DOSC au-dessus ou en-dessous du dV-SUB.

dV-DOWN

Adaptateurs (x2) permettant d'installer du dV-DOSC en-dessous du V-DOSC pour les applications "downfill".

dV-PIN25

Goupille à attache rapide pour connecter physiquement les enceintes dV-DOSC ou dV-SUB entre elles. Pour connecter deux enceintes, 6 dV-PIN 25 et 2 dV-ANGLE (PI ou P2) sont nécessaires.

dV-PIN 81

Goupille à attache rapide pour connecter le dV-DOSC au dV-DOWN.

dV-ANGLEP1, dV-ANGLEP2

Barres angulaires utilisées pour former une ligne convexe. Les angles disponibles sont :

P1: 0, 2, 3.75, 5.5, 7.5 degrés P2: 1, 3, 4.5, 6.5 degrés

dV-ANGLEN

Barres angulaires utilisées pour former une ligne concave ou pour stacker un système dV-DOSC. Les angles disponibles sont : 0, -2, -3.75, -5.5, et -7.5 degrés.

dV-ANGLESS

Barre d'angulation arrière et avant pour attacher deux dV-SUB (SS=Sub →Sub)

dV-ANGLESD

Barre d'angulation avant utilisée pour accrocher le dV-DOSC au dV-SUB (SD= Sub \rightarrow dV).

dV-ANGLESDP

Barre d'angulation arrière utilisée pour accrocher le dV-DOSC au dV-SUB (SDP= Sub \rightarrow dV Angle positif). Les angles disponibles sont 0, 1.75, 3.75 degrés

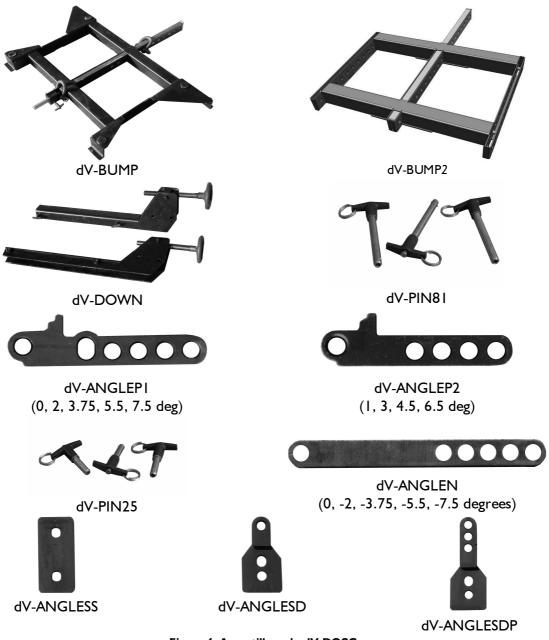


Figure 4: Accastillage du dV-DOSC

ENCEINTES SUB-GRAVES

dV-SUB

L'enceinte est un système sub-grave doté de trois transducteurs 15" de forte puissance, chargés dans une enceinte bass-reflex à double accord.

dV-SUBCOV

Housse de protection pour un dV-SUB (vendues par paire).

SRII8

L'enceinte est un système sub-grave doté d'un transducteur 18" de forte puissance, chargé dans une enceinte bass-reflex à double accord.

SB118COV

Housse de protection pour un SBII8 (vendues par paire).

SR218

L'enceinte est un système sub-grave à radiation directe, composée de deux transducteurs 18" de forte puissance chargés dans une enceinte bass-reflex accordée à 30 Hz.

SUBCOV

Housse de protection pour un SB218 (vendues par paire).

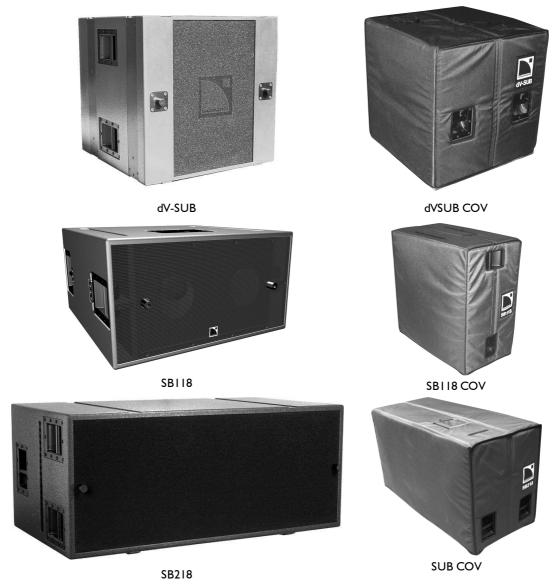


Figure 5: Eléments sub-graves

ACCESSOIRES DE RIGGING POUR LES ENCEINTES SUB-GRAVES BUMPSUB

Barre d'accrochage pour suspendre jusqu'à 8 enceintes SB218 en position verticale.

dV-BUMP2

Structure d'accrochage pour suspendre ou empiler les enceintes dV-DOSC et/ou dV-SUB

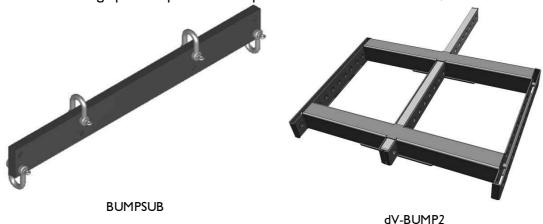
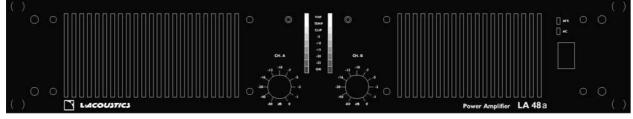


Figure 6: Accastillage sub-grave

AMPLIFICATION

L-ACOUSTICS LA24a


Amplificateur 2 canaux, compact et léger (2 unités de Rack, 10 kg), 1100 Watts par canal sous 8 ohms, 1500 Watts sous 4 ohms.

L-ACOUSTICS LA48a

Amplificateur 2 canaux, compact et léger (2 unités de Rack, 10 kg), 1300 Watts par canal sous 8 ohms, 2300 Watts sous 4 ohms.

L-ACOUSTICS LA24a

L-ACOUSTICS LA48a

Figure 7: Amplificateurs de puissance L-ACOUSTICS LA24a, LA48a

Note: Pour plus de détails, merci de vous référer aux manuels LA24a et LA48a disponibles sur le site www.l-acoustics.com

RACKS D'AMPLIFICATEURS

RKI2U

Rack d'amplification 12 Unités (vide), avec armature légère en aluminium, Silent block, support arrière pour amplificateurs, portes en lexan transparentes. Le rack est recouvert d'une couche de polyéthylène offrant une grande résistance. Rails d'accrochage disponibles pour suspendre le RK12U.

RKI22a

Rack d'amplification RK12U équipé avec 1x PADO2a, 1 PADOSEC (connecteur 32 amp Mono, 5 PC16 220V), 1 tiroir de 2 Unités, kit de fixation arrière pour amplificateur.

RKI24a

Rack d'amplification RK12U avec 2 x PADO2a, I PADOSEC (connecteur 32 amp Mono, 5 PC16 220V), Kit de fixation arrière pour 4 amplificateurs.

PADO2a AMP PANEL

Patch de distribution pour 2 amplificateurs L-ACOUSTICS LA, composé d'un connecteur 8 points CACOM pour connecter les enceintes (en parallèle avec 4 Speakon NL4), 2 CA-COM 19 points pour la distribution du signal (entrée/sortie), un connecteur COMB (pour sélectionner le mode d'utilisation – 2-Way, 3-Way, Sub-grave), 4 XLR Mâle et 4 Speakons situés à l'arrière du PADO2a pour connecter les amplificateurs.

Note: PADO signifie PATCH DOSC


PADO4a AMP PANEL

Patch de distribution pour 4 amplificateurs L-ACOUSTICS LA, composé d'un connecteur 8 points CACOM pour connecter les enceintes, 2 CA-COM 19 points pour la distribution du signal (entrée/sortie), 2 connecteurs COMB (pour sélectionner le mode d'utilisation – 2-Way, 3-Way, Sub-grave), 4 XLR Mâle et 4 Speakons situés à l'arrière du PADO4a pour connecter les amplificateurs.

COMB CONNECTOR

Les connecteurs COMB permettent la distribution des lignes analogiques du CA-COM vers les différents amplificateurs de puissance pour configurer les RK122K ou RK124K en mode 3-voies (dV-DOSC + dV-SUB), sub-graves (SB118 ou sb218) ou 2-voies (ARCS, dV-DOSC, XT), connecteurs COMB (D3WAY, DSUB et D2WAY). Des connecteurs COMB additionnels sont disponibles pour une utilisation en mode 2 ou 3 voies (D2WA, D2WB, D2WSTEREO, D3WA, D3WB, DSUBA, DSUBB), la réalisation d'Arc sub, ou l'amplification d'enceintes passives (DSUBTK).

PADO2a

PADO4a

RK I 24a

Figure 8: Options et accessoires des racks d'amplificateurs

DISTRIBUTION DU SIGNAL ET CABLAGE CO6 CONTROL OUTPUT PANEL

Le CO6 est un patch de distribution du signal qui permet de créer, à l'aide d'un DSP 2 ou 3 entrées et 6 sorties, un système flexible et autonome de contrôle du signal.

Les sorties du DSP sont connectées au CO6 à l'aide de 6 XLR, disponibles à l'arrière et assignés au connecteur CA-COM 19 points, permettant l'utilisation des multipaires DOM2 et DOM30.

CO24 CONTROL OUTPUT PANEL

Le CO24 est un patch de distribution du signal qui permet de créer, à l'aide de 4 DSP 2 ou 3 entrées et 6 sorties, un système flexible et autonome de contrôle du signal.

Les sorties du DSP sont connectées au CO24 à l'aide de 6 x 4 XLR, disponibles à l'arrière et assignés au connecteur CA-COM 19 points, permettant l'utilisation des multipaires DOM2 et DOM30.

CARTES PCMCIA

Les cartes PCMCIA contiennent les presets pour les processeurs XTA DP224, DP226 et BSS366 (PCM224K, PCM226K et PCM366K). Les autres DSP sont programmables via un ordinateur (Lake Contour, BSS Sounweb).

CABLE MULTIPAIRES DOM2

Câble multipaires (6 paires) d'une longueur de 2 m, avec 2 CA-COM femelles (pour relier les DSP aux racks d'amplificateurs et les amplificateurs entre eux).

CABLE MULTIPAIRES DOM30

Câble multipaires (6 paires) d'une longueur de 30m, avec 2 CA-COM femelles (pour relier les DSP aux racks d'amplificateurs et les amplificateurs entre eux). La longueur permet d'effectuer des traversées de scène.

ADAPTEUR DOMP

Connecteur CA-COM 19 points mâle/mâle, pour relier 2 DOM2 ou DOM30

ADAPTATEUR DOMM

Adaptateur multipaires CA-COM 6 XLR mâle.

ADAPTATEUR DOMF

Adaptateur multipaires CA-COM 6 XLR femelle.

Note: DOM signifie DOSC Modulation;

DOMP signifie <u>DOSC Modulation Prolongateur</u>.

MD24 MULTI DISTRO

CO24 CONTROL OUTPUT

CO6 CONTROL OUTPUT

MC28100 MULTI

DOM30 CROSS LINK

DOM2 AMP LINK

DOMF LINK BREAKOUT

DOMM LINK BREAKOUT

DOMP LINK EXTEND

PCMCIA CARD

Figure 9: Distribution du signal et câblage

CABLES D'ENCEINTES

DO7

Câble enceinte 8x4mm2, connecteurs CACOM 8 points, longueur $7\ m$

DO25

Câble enceinte 8x4mm2, connecteurs CACOM 8 points, longueur 25 m

DOSUB SUB CABLE

Adaptateur CA-COM 8 points vers 4 Speakon NL4 pour relier 4 éléments sub-graves au PADO2a ou PADO4a.

DOIOP EXTENSION CABLE

Câble d'extension de 10m à utiliser avec les câbles DOSUB, DO7, DO2W ou DO3W.

SP.7 F-LINK CABLE

Câble enceinte 4x4mm2, connecteurs Neutrik Speakon NL4, longueur 0,70 m (pour relier en parallèle les enceintes dV-DOSC).

SP7 F-CABLE

Câble enceinte 4x4mm2, connecteurs Neutrik Speakon NL4, longueur 7 m (pour relier en parallèle les enceintes dV-DOSC aux PADO2a /ou PADO4a).

SP25 F-CABLE

Câble enceinte 4x4mm2, connecteurs Neutrik Speakon NL4, longueur 25 m (pour relier en parallèle les enceintes dV-DOSC aux PADO2a /ou PADO4a).

DOFILL

Adaptateur CA-COM 8 points vers 2 Speakon NL4 (3m de long) pour relier 2 enceintes actives 2 voies bi-amplifiées à utiliser avec les câbles DO7 ou DO25, PADO2a ou PADO4a et les COMB connecteurs 2W(A), 2W(B) ou 2W STEREO COMB.

DO3W/ DO3WFILL

Adaptateur CA-COM 8 points vers 3 Speakon NL4 (3m de long) pour relier I enceinte active 2 voies bi-amplifiée et un élément sub-grave, à utiliser avec les câbles DO7 ou DO25, PADO2a ou PADO4a et les COMB connecteurs 3W(A) ou 3W(B).

CC4FP

Adaptateur speakon femelle/femelle.

Figure 10: Câbles d'enceintes

16

1.2 VUE D'ENSEMBLE D'UN SYSTEME dV-DOSC.

Figure II: Enceinte dV-DOSC Vue avant et arrière

La base du système est une enceinte active 2 voies, pilotée par un filtre numérique utilisant des programmes spécifiques. L'enceinte comprend deux haut-parleurs de 8 pouces à radiation directe, accordés en bass-reflex, et montés dans une configuration en V de part et d'autre d'un moteur à compression 1.4 pouce en néodymium chargé par un guide d'onde générant à sa sortie un front d'onde plat et isophase. La forme en V définit une directivité horizontale de 120°, indépendante du nombre d'éléments empilés.

L'ébénisterie a des faces latérales trapézoïdales d'angle 7.5°. Ses dimensions sont de 69.5 cm en largeur, 25.7 cm en hauteur à l'avant et 47.6 cm en profondeur. La masse nette de l'enceinte est de 32 kg. La connexion par deux fiches Speakon 4 points parallèles est accessible sur la face arrière.

L'ébénisterie comprend sur chaque angle des points d'accrochage qui servent à solidariser, par l'intermédiaire de pièces angulaires spécifiques, les enceintes les unes aux autres et sur le bumper.

Les enceintes doivent être assemblées verticalement pour former une colonne sonore articulée présentant un angle entre chaque élément compris entre 0° et 7.5°. Dans cette configuration, le principe de la WST est respecté sur l'ensemble du spectre sonore.

Figure 12: Ligne source dV-DOSC

1.3 AMPLIFICATION D'UN SYSTEME dV-DOSC

Les amplificateurs de puissance L-ACOUSTICS LA24a ou LA48a doivent être spécifiés pour utiliser le dV-DOSC. Pour plus de détails techniques, merci de vous référer aux manuels utilisateurs, disponibles sur le site : www.l-acoustics.com.

L'amplificateur L-ACOUSTICS LA48a est approprié pour amplifier 3 dV-DOSC en parallèle.

L'amplificateur L-ACOUSTICS LA24a est approprié pour amplifier 2 dV-DOSC en parallèle.

Le dV-DOSC est amplifié de la façon suivante : un canal amplifie la section médium et un autre la section aiguë.

L'impédance de charge des différents transducteurs est :

- I x 8 ohms pour la section aiguë.
- I x 8 ohms pour la section médium.

Les puissances d'amplification recommandées ainsi que les options d'amplification à l'aide des amplificateurs L-ACOUSTICS LA sont résumées ci-dessous :

ONE dV-DOSC TWO dV-DOSC THREE dV-DOSC SECTION LOAD RMS PEAK REC'D LOAD RMS PEAK REC'D LOAD RMS PEAK REC'D dV LOW 380 1520 760 760 3040 1520 2.7 1140 4560 2280 130 4V HIGH 260 260 520 520 2.7 200 800 800

Tableau I: Charge et puissance requises pour le dV-DOSC

dV-DOSC LOW SECTION				
REC'D POWER				
LOAD	REC'D			

OAD hms)	REC'D POWER	
2.7	2280	
4	1520	
8	760	

AMPLIFIER OUTPUT	POWER
(MLS SETTING)	

LA 17a	LA 24a	LA 48a
I 080	1635	2130
do not use	(0 dB)	(-2 dB)
840	1500	1600
do not use	(0 dB)	(-2 dB)
430	1100	820
do not use	(0 dB)	(-2 dB)

dV-DOSC HI SECTION REC'D POWER

LOAD	REC'D
(ohms)	POWER
2.7	800
4	520
8	260

AMPLIFIER OUTPUT POWER (MLS SETTING)

(MLS SETTING)				
LA 17a	LA 24a	LA 48a		
1080	1000	1380		
(0 dB)	(-5 dB)	(-5 dB)		
840	600	830		
(0 dB)	(-5 dB)	(-5 dB)		
430	300	430		
(0 dB)	(-5 dB)	(-5 dB)		

Note : L-ACOUSTICS recommande la mise en service des clips limiteurs des amplificateurs à chaque utilisation du système.

Les amplificateurs L-ACOUSTICS LA24a et LA48a ont un gain de 32 dB.

Le tableau I indique que les amplificateurs LA24a sont appropriés pour amplifier 2 dV-DOSC en parallèle tandis que les amplificateurs LA48a sont appropriés pour amplifier 3 dV-DOSC en parallèle. Alternativement, pour une configuration en 2.7Ω , le LA24a peut être utilisé pour la section aiguë et le LA48a pour la section médium.

Note : Pour plus de sécurité pour la section aiguë, les commutateurs MLS doivent être réglés d'après la recommandation suivante, pour obtenir une puissance plus adaptée :

LA24a dV-DOSC Section médium : MLS = 0 dB LA24a dV-DOSC Section aiguë : MLS = -5 dB

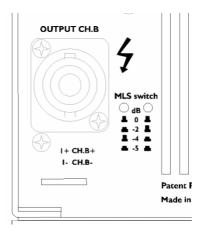


Figure 13 : Commutateurs MLS situés à l'arrière des amplificateurs LA24a et LA8a

Tableau 2 : Spécifications des amplificateurs de puissance L-ACOUSTICS LA24a et LA48a

L-ACOUSTICS LA 24a POWER MATRIX

Lucousnes		MLS SWITCH SETTING			
LOAD	CONFIGURATION	-5 dB	-4 dB	-2 dB	0 dB
I6 ohms	Stereo (2 channel)	160	200	340	520
8 ohms	Stereo (2 channel)	300	400	700	1100
4 ohms	Stereo (2 channel)	600	750	1300	I 500
2.7 ohms	Stereo (2 channel)	1000	1180	1465	I 635
2 ohms	Stereo (2 channel)	1200	1400	1550	1700

L-ACOUSTICS LA 48a POWER MATRIX

LACOUSTICS		MLS SWITCH SETTING			
LOAD	CONFIGURATION	-5 dB	-4 dB	-2 dB	0 dB
I 6 ohms	Stereo (2 channel)	220	260	410	650
8 ohms	Stereo (2 channel)	430	520	820	1300
4 ohms	Stereo (2 channel)	830	1000	1600	2300
2.7 ohms	Stereo (2 channel)	1380	1665	2130	2700
2 ohms	Stereo (2 channel)	1660	2000	2400	2900

1.4 AMPLIFICATION DES ENCEINTES SUB-GRAVES

Les puissances d'amplifications recommandées pour les enceintes sub-graves SB118, SB218 et dV-SUB sont résumées ci-dessous.

Tableau 3: SBI 18

SB118 ENCLOSURE RATINGS

ONESBI 18			TWO SBI I	8			
LOAD	RMS	PEAK	REC'D	LOAD	RMS	PEAK	REC'D
8	600	2400	1200	4	1200	4800	2400

RECOMMENDED BOWER AMP

POWER AMP				
LOAD	REC'D			
(ohms)	POWER			
4	2400			
8	1 200			

AMPLIFIER POWER

(MLS SETT	TING)
LA 24a	LA 48a
1500	2300
do not use	(0 dB)
1100	1300
(0 dB)	(0 dB)

Tableau 4: dV-SUB

dV-SUB ENCLOSURE RATINGS

ONE dV-SUB							
LOAD RMS PEAK REC'D							
2.7	I 200	4800	2400				

RECOMMENDED

POWER	
LOAD	REC'D
(ohms)	POWER
2.7	2400

AMPLIFIER POWER

М	MLS SETTING)						
	LA 48a						
	2700						
	(0 dB)						
	(G GB)						
-		_					

SB218 ENCLOSURE RATINGS

ONE SB2 18							
LOAD	RMS	PEAK	REC'D				
4	1100	4400	2200				

Tableau 5: SB218

RECOMMENDED POWER

TOWER	
LOAD	REC'D
(ohms)	POWER
4	2200

AMPLIFIER POWER

M	ILS SETTIN
	LA 48a
	2300
	(0 dB)

1.5 RACKS D'AMPLIFICATEURS dV-DOSC

Figure 14: Rack d'amplificateurs L-ACOUSTICS RK12-4

Le RK12U est un rack d'amplification de 12 Unités (vide), avec armature légère en aluminium, Silent block, support arrière pour amplificateurs, portes en lexan transparentes. Le rack est recouvert d'une couche de polyéthylène offrant une grande résistance. Rails d'accrochage disponibles pour suspendre le RK12U. Ces dimensions extérieures sont : 77 cm de haut x 61 cm de large x 58 cm de profondeur.

Les racks d'amplification de puissance RK122a et RK124a sont vendus « prêts à amplifier » et peuvent être utilisés avec des amplificateurs L-ACOUSTICS LA24a ou LA48a, en fonction du nombre de dV-DOSC à amplifier. Des exemples utilisant des amplificateurs de puissance LA48a (non vendus avec les RK122K ou RK124K) et le PADO2K sont montrés ci-dessous.

4 x LA48a plus PADO4a

4 x LA48a plus 2 x PADO2a

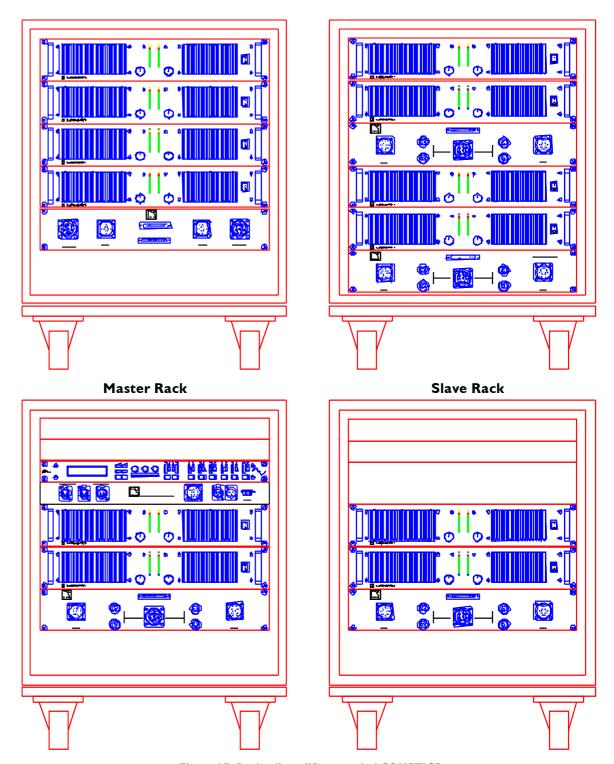


Figure 15: Racks d'amplificateurs L-ACOUSTICS

1.6 CONNECTEURS COMB

Les connecteurs COMB associés aux CO6 permettent la distribution des lignes analogiques du CA-COM aux différents amplificateurs de puissance, pour configurer les RK122K ou RK124K, dans les différents modes possibles. Ils permettent de modifier l'assignement des sorties de DSP aux amplificateurs sans avoir à recâbler les racks.

Figure 16: Connecteur COMB 3-WAY pour le dV-DOSC

L'assignation des sorties de DSP pour les presets aux formats 4+2 et 5+1, le patch CO6/CO24 et les COMB connecteurs 3-WAY, SUB, 2-WAY sont résumés ci-dessous :

Les connecteurs COMB pour utiliser le dV-DOSC aux formats 4 WAY+2 ou 5 WAY+1 sont :

```
DSUB = SUB (1 du DSP SB118 ou SB218)
D3WAY = 3-WAY (2/3/4 pour le dV-DOSC/dV-SUB - grave / médium / aiguë)
D2WAY = 2-WAY (sorties 5/6 pour les systèmes 2 voies)
```

Des connecteurs COMB sont disponibles pour utiliser les enceintes 2 ou 3 voies, aux formats 2 ou 3 voies :

```
D2WA
              = 2W(A)
                            (sorties 2/3 pour les enceintes 2 voies)
D2WB
              = 2W(B)
                             (sorties 5/6 pour les enceintes 2 voies)
D2WSTEREO = 2W(STEREO)(sorties 2/3 et 5/6 pour les enceintes 2 voies en stéréo)
D3WA
              = 3W(A)
                             (sorties 1/2/3 pour les subs associés aux enceintes 2 voies)
                             (sorties 4/5/6 pour les subs associés aux enceintes 2 voies)
D3WB
              = 3W(B)
DSUBA
                      = SUB(A)
                                           (sortie I - sub-grave)
DSUBB
                     = SUB(B)
                                           (sortie 4 - sub-grave)
```

DSUBTK est un ensemble de 6 connecteurs COMB permettant de réaliser un Arc-sub ou d'amplifier des enceintes passives :

```
SUB TI = sortie I
SUB T2 = sortie 2
SUB T3 = sortie 3
SUB T4 = sortie 4
SUB T5 = sortie 5
SUB T6 = sortie 6
```

Les modes opératoires et l'organisation des ressources des amplificateurs pour le rack RK122a (PADO2a plus 2xLA48a) sont résumés ci-après.

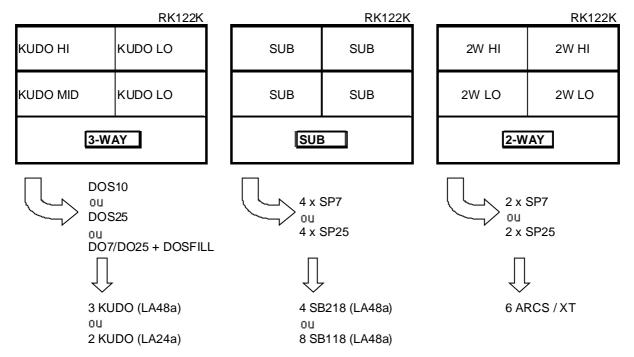


Figure 17 : Configurations possibles d'un RK122a et options de câblage

Pour amplifier des enceintes 2 voies, ou des systèmes ARCS ou XT 3 voies, en stéréo, en utilisant les PADO2K, des connecteurs COMB additionnels peuvent être utilisés : 2W(A), 2W(B), 3W(A), 3W(B), SUB(A), SUB(B) ou 2W STEREO. L'organisation des sorties du DSP pour les presets 2 et 3 voies, les patchs CO6 / CO24 et les connecteurs COMB est indiquée ci-dessous :

DSP OUTPUT	2W STEREO	3W STEREO	CO6 / CO24		COMB CONNECTOR CHANNEL SELECTION					
CHANNEL	PRESET	PRESET	INPUT	SUB (A)	2W (A)	SUB (B)	2W (B)	2W STEREO	3W (A)	3W (B)
1		SUB(A)	1	SUB (A)					SUB (A)	
2	LO (A)	LO (A)	2		LO(A)			LO (A)	LO (A)	
3	HI (A)	HI (A)	3		HI (A)			HI (A)	HI (A)	
4		SUB (B)	4			SUB (B)				SUB (B)
5	LO (B)	LO (B)	5				LO (B)	LO (B)		LO (B)
6	HI (B)	HI (B)	6				HI (B)	HI (B)		HI (B)

Cette organisation permet un câblage logique entre les sorties du DSP et les entrées du CO6, c'est à dire que la sortie I correspond à l'entrée I sur le CO6 et ainsi de suite. Ceci aide à éliminer les problèmes potentiels de câblage, car il n'est pas nécessaire de redistribuer les sorties du DSP pour changer de configuration en stéréo (SUB, 2-WAY, 3WAY).

Les modes opératoires, le câblage des racks d'amplificateurs de puissance L-ACOUSTICS ainsi que l'organisation architecturale des racks RK122a (PADO2a et 2xLA48a) sont décrits ci-dessous :

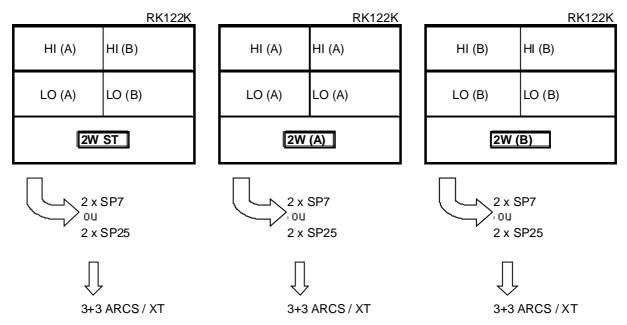


Figure 18 : Configuration d'un rack RK122a et options de câblage pour un système 2 voies stéréo

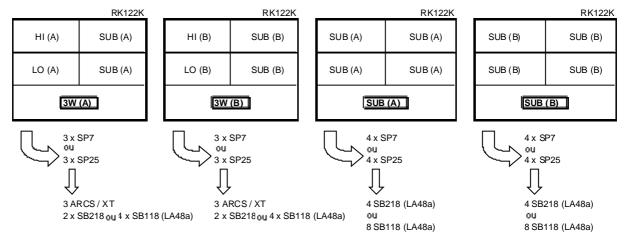


Figure 19 : Configuration d'un rack RK122a et options de câblage pour un système 3 voies stéréo

1.7. FILTRAGE DU dV-DOSC

1.7.1 PROCESSEURS APPROUVES

Les programmes (presets) du système dV-DOSC sont disponibles pour les processeurs numériques XTA DP224, XTA DP226 (ou DP6i = version installations fixes du DP226), BSS FDS-366 (Omnidrive Compact Plus), BSS Soundweb et Lake Contour.

Les bibliothèques de Presets sont distribuées via une carte PCMCIA, disponible chez votre distributeur L-ACOUSTICS ou en téléchargement depuis le site www.l-acoustics.com. Seuls les DSP pour XTA DP6i, BSS Soundweb et Lake Contour ne sont paramétrables que via un ordinateur.

Les différences architecturales des processeurs numériques (XTA DP226 2 entrées / 6 sorties, DP224 2 x 4, FDS-366 3 x 6, Lake Contour 2 x 6) nécessitent un câblage différent selon le processeur choisi et l'application voulue. Considérez soigneusement ces aspects avant de choisir le type de processeur à utiliser.

Pour plus de détails techniques sur ces processeurs numériques, merci de vous référer à leurs manuels utilisateurs respectifs (www.lake.com.au, www.xta.co.uk, www.bss.co.uk).

Note : merci de vous référer aux tableaux décrivant l'affectation des voies de sorties lors de la sélection des presets et de la configuration du système. Les tableaux sont disponibles sur le site <u>www.l-acoustics.com</u>.

1.7.2 POLITIQUE CONCERNANT LE FILTRAGE DU dV-DOSC

Les presets dV-DOSC constituent un point de référence pour tous les utilisateurs de systèmes dV-DOSC, et la politique de L-ACOUSTICS impose que les paramètres principaux du filtrage des enceintes soient protégés par des mots de passe préréglés, afin de préserver l'intégrité des systèmes L-ACOUSTICS.

2. PROCEDURES D'INSTALLATION

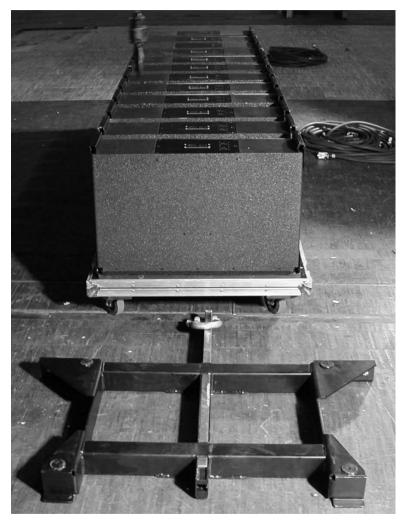
Les procédures d'installation pour l'accrochage du dV-DOSC et/ou dV-SUB sont décrites cidessous. Merci de bien vouloir suivre attentivement ces procédures, et d'utiliser les sécurités nécessaires.

De plus:

- Seul les utilisateurs expérimentés sont habilités à accrocher les systèmes de sonorisation L-ACOUSTICS. Merci de consulter un rigger certifié, pour des questions de sécurité.
- Les utilisateurs doivent être familiarisés avec les techniques d'accrochage décrites dans ce manuel.
- Le système d'accrochage L-ACOUSTICS de chaque enceinte possède la certification CE (disponible en annexe).
- Quelques pays exigent des coefficients de sécurité plus contraignants. C'est la responsabilité de l'utilisateur de s'assurer que l'installation des systèmes L-ACOUSTICS est réalisable suivant les normes du pays dans lequel il se trouve.
- L-ACOUSTICS n'est pas responsable des accessoires d'accrochage qui ne sont pas fabriqués par L-ACOUSTICS.
- L-ACOUSTICS recommande l'utilisation d'élingues de sécurité à chaque utilisation.
- Merci de vous référer aux données mécaniques disponibles dans le logiciel SOUNDVISION pour vérifier la validité de votre installation.

2.1 ACCROCHAGE DU SYSTEME

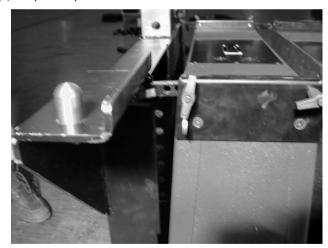
Pour accrocher le système à l'aide de deux points moteurs, il convient d'utiliser les points 0 et 16 situés sur la barre centrale (l'espacement entre les points est de 80 cm). Un seul point d'accroche situé sur la barre centrale (de 1 à 16) peut être utilisé.


Note: Pour choisir le nombre de moteurs dans SOUNDVISION, il suffit de sélectionner '#motors=1' et indiquer le point d'accrochage. L'angle de site du cluster est automatiquement calculé par SOUNDVISION. Durant l'installation, l'angle de site doit être vérifié à l'aide d'un inclinomètre (la tolérance pour l'angle de site est de +/- I trou).

Le coefficient de sécurité dépend de la manière avec laquelle le système est accroché. Merci de vous référer à la déclaration de conformité, disponible en annexe, pour connaître les différents facteurs de sécurité en fonction des options d'accrochage.


PROCEDURE D'INSTALLATION

La procédure d'installation doit suivre les étapes suivantes :


- ⇒ Déterminer les dimensions de la salle,
- ⇒ Entrer les données dans SOUNDVISION pour déterminer les paramètres d'installation,
- ⇒ Installation du système,
- ⇒ Visée du système,
- ⇒Vérification et réglage du système.

(i) dV-DOSC, dV-FLIGHT et dV-BUMP.

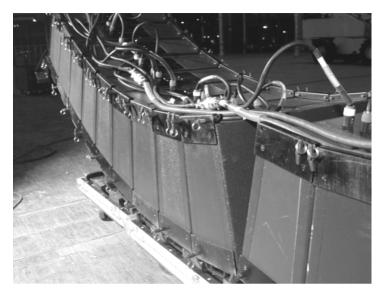
(ii) Goupiller la partie avant des dV-DOSC en utilisant des dV-PIN25.

(iii) Utiliser l'angle de 3.75° pour solidariser le dV-BUMP au 1er dV-DOSC.

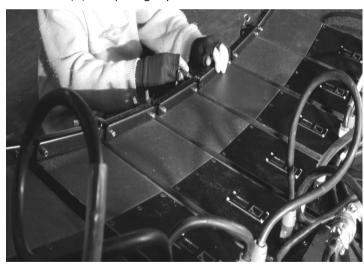
(iv) Préattacher l'ensemble des dV-ANGLE (à l'arrière).

(vi) Les dV-BUMP sont attachés, les dV-ANGLE préattachés.

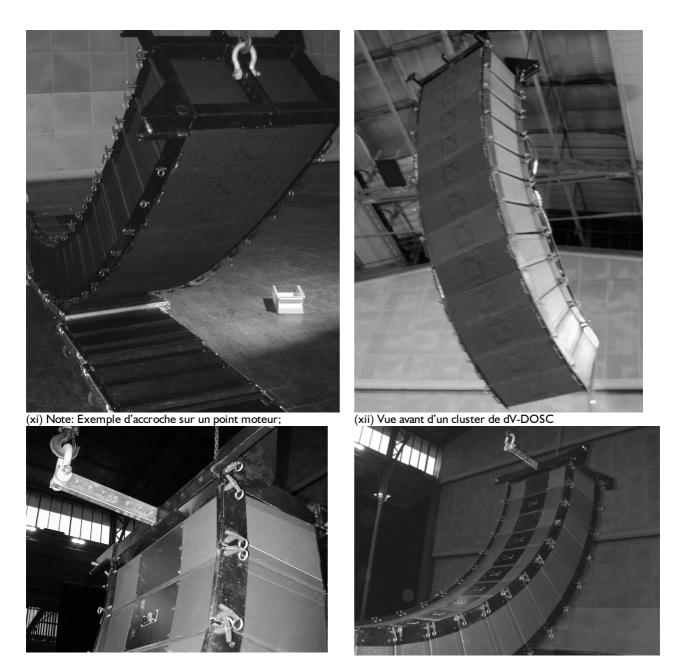
(v) Présélectionner l'angle voulu.



(vii) Connecter les enceintes dV-DOSC par groupe de trois.



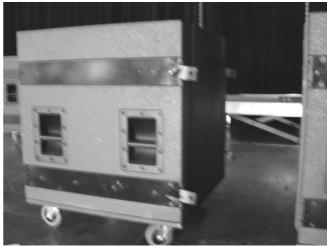
(viii) Vue de la transition entre les groupes de 3 dV-DOSC



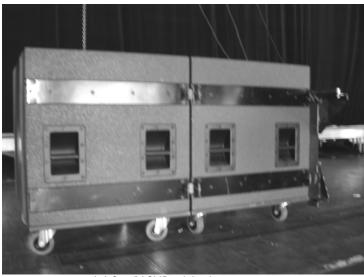
(ix) Lorsque le groupe d'enceintes se lévent ...



(x) \dots Attacher les dV-ANGLE à l'aide des dV-PIN.



(xiii) Avec un point d'accroche à l'arrière (point $n^{\circ}16$), 12 dV-DOSC avec un angle de 7.5° nous donnent une couverture de 90° .


Figure 20: Accroche d'un cluster de dV-DOSC avec un dV-BUMP (ou dV-BUMP2)


(i) dV-SUB attaché au dV-BUMP, à l'aide de 4 x dV-ANGLESD et de 8 dV-PIN25.


(ii) Second dV-SUB préattaché à l'aide de 4 x dV-ANGLESS.

(iii) 2 x dV-SUB reliés physiquement.

(iV) dV-ANGLESD (à l'avant) et dV-ANGLESDP (à l'arrière).

(v) Pre-connecter le premier dV-DOSC au dV-SUB (Ne pas attacher le premier dV-DOSC au deuxième).

(vi) Tous les dV-DOSC sont attachés à l'avant par bloc de 3 (à l'exception du premier et du deuxième dV-DOSC).

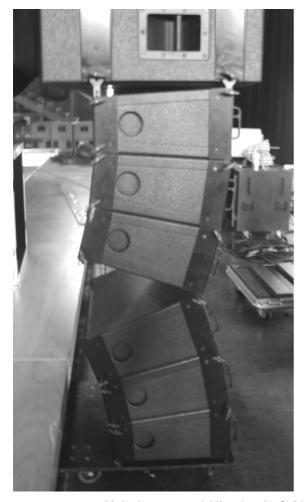
Figure 21: Accrochage du dV-DOSC en-dessous du dV-SUB (procédure 1)


Procédure 2 (grandes configurations)

Tableau 6: Charte d'accrochage sur I point moteur

(2 dV-SUB, 6 dV-DOSC, 7.5 deg entre tous les dV-DOSC)

(1 4 7 3 5 5 7 7 5 5 5 5 7 7 5 4 6 5 6 Hill 6 1 5 4 7 5 5 5 6 7					
dV-BUMP - Trou n°	dV-BUMP - Angle de site				
(0=avant, 16=arrière)	(= angle du bumper obtenu				
I -> 8 = centre	avec un angle de 3.75°				
$9 \rightarrow 16 = bar d'extension$	entre le dV-SUB et le dV-DOSC)				
I	+9.5 deg				
2	+7.8 deg				
3	+5.9 deg				
4	+4.1 deg				
5	+2.0 deg				
6	0 deg				
7	-1.9 deg				
8	-4.1 deg				



(ii) Basculer les dV-DOSC sur le chariot du dV-SUB.

(ii) Attacher les dV-DOSC à l'avant en utilisant les angles dV-ANGLESD. Le cluster est levé et on attache ensuite les points arrières.

35

(v) Après avoir attaché l'arrière des 3 dV-DOSC au dV-SUB, on continue avec les 3 suivants.

Figure 22: Accrochage du dV-DOSC en-dessous du dV-SUB (procédure 2)

REGLES DE SECURITE

ATTENTION: MERCI DE SUIVRE LES INDICATIONS DECRITES CI-DESSOUS LORS DE L'ACCROCHAGE DES dV-DOSC et dV-SUB

- dV-BUMP OU dV-BUMP2 UNIQUEMENT (UN OU DEUX POINTS MOTEUR SUR LA BARRE CENTRALE)
 - Maximum 24 enceintes dV-DOSC.
- dV-BUMP OU dV-BUMP2 + BARRE D'EXTENSION
 (UN SEUL POINT D'ACCROCHE SUR LA BARRE D'EXTENSION)
 - Maximum 12 enceintes dV-DOSC.
- dV-BUMP OU dV-BUMP2 + BARRE D'EXTENSION
 (2 POINTS D'ACCROCHE SUR LE POINT AVANT DU dV-BUMP ET LE POINT ARRIERE DE LA BARRE D'EXTENSION)
 - Maximum 12 enceintes dV-DOSC.
- dV-DOSC ACCROCHÉ EN DESSOUS DU V-DOSC EN UTILISANT LE dV-DOWN
 - Maximum 6 enceintes dV-DOSC
 - 15 V-DOSC + 3 dV-DOSC maximum
 - 14 V-DOSC + 6 dV-DOSC maximum
- dV-DOSC POSÉ AU SOL
 - Maximum 12 en utilisant le dV-BUMP + le bumper V-DOSC
- dV-DOSC POSÉ SUR UN CLUSTER DE V-DOSC
 - Maximum 6 enceintes dV-DOSC.

Tableau 7: Nombre maximum d'enceintes accrochables lors de l'utilisation de la barre d'extension

dV-SUB	0	I	2	3	4	5	6
dV-DOSC	12	6	4	I	0	0	0
Poids total	414 kg 912	290 kg 639	316 kg 697	309 kg 681	368 kg 811	460 kg 1014	552 kg 1217
	lbs	lbs	lbs	lbs	lbs	lbs	lbs

Tableau 8: Nombre maximum d'enceintes accrochables lors de l'utilisation de la barre centrale du dV-BUMP seul

dV-SUB	0	I	2	3	4	5	6	6
dV-DOSC	24	9	8	7	6	4	I	0
Poids total	786 kg	389 kg	448 kg	507 kg	566 kg	592 kg	585 kg	552 kg
	1732 Ibs	858 lbs	988 Ibs	1118 lbs	l 248 lbs	1305 lbs	l 290 lbs	1217 Ibs

3. PROCEDURES DE MAINTENANCE

La procédure d'entretien mensuel du système est :

- Utiliser un sweep (sinus glissant de 20 Hz à 20 kHz) et un testeur de polarité, pour s'assurer du bon fonctionnement des haut-parleurs et des moteurs à compression.
- Faire un test de continuité de l'ensemble des câbles (modulation et HP).
- Nettoyer les mousses des filtres des amplificateurs de puissance.
- Vérifier que vous possédez la dernière version des presets.

La procédure d'entretien bi-annuel du système (tous les 6 mois) est :

- Vérifier toutes les pièces d'accrochage, et procéder à leur remplacement si nécessaire.
- Vérifier la connectique située sur les enceintes et les patchs PADO et CO.
- Occasionnellement, reformer les grilles et repeindre les enceintes.

3.1 OUTILS RECOMMANDES POUR LA MAINTENANCE

Tableau 9: Outils recommandés pour la maintenance

APPLICATION	Outils
Si Besoin	#2 Phillips screwdriver
Montage du médium	4 mm hex key
Montage du diaphragme	4 mm hex key
Montage du guide d'ondes DOSC	10 mm socket

3.2 PIECES DETACHÉES

Haut-parleurs

LID DC22	Makaum I 1' 0 alama
HP BC22	Moteur 1.4' - 8 ohms

HS BC22 Diaphragme pour moteur 1,4'
HP PH81 Haut-parleur 8' 16 Ohms
HS PH81 Kit de remembranage 8'

HR PH81 HP remembrané comprenant kit et main d'œuvre

CM dV-DOSC Mousse de façade MC dV-DOSCGRL Grille face avant

CD COLNEO Colle néoprène en spray 500ml

HP PH 153 Haut-parleur 15' – 8 Ohms HS PH 153 Kit de remembranage 15'

HR PH 153 HP remembrané comprenant kit et main d'œuvre

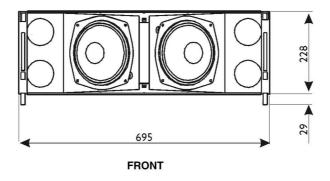
CM dV-SUB Mousse de façade
MC dV-SUBGRL Grille face avant

CD COLNEO Colle néoprène en spray 500ml

Connecteurs

CA LOGOP	Logo laiton L-ACOUSTICS (taille 15 mm x 15 mm)
CA LOGOG	Logo laiton L-ACOUSTICS (taille 35 mm x 35 mm)
CC 8B EF	Embase femelle CA-COM baïonnette 8 broches
CC 8B EM	Embase male CA-COM baïonnette 8 broches
CC 8B FF	Fiche femelle CA-COM baïonnette 8 broches
CC 8B FM	Fiche male CA-COM baïonnette 8 broches
CC 8B FPM	Fiche male CA-COM prolongateur 8 broches
CC 8B FPF	Fiche femelle CA-COM prolongateur 8 broches
CC 19B EM	Embase male CA-COM 19 broches
CC 19B FF	Fiche femelle CA-COM 19 broches

3. 3 OUTILS POUR L'INSTALLATION


- Inclinomètre numérique Digital Protractor PRO 3600 (ou équivalent);
- 2 inclinomètres numériques télécommandables LUCAS ANGLESTAR ou Rieker RAD2-70-B2 (www.riekerinc.com);
- 2 lasers Laserline XPRO (ou équivalent);
- Télémètre laser Leica Disto Classic et Bushnell Yardage Pro (ou équivalent) ;
- 2 doubles décamètres ;
- Testeur de phase PC 80 MK I I SCV Audio (ou équivalent) ;
- Ordinateur portable avec SOUNDVISION; Lake Contour; XTA Audiocore; BSS SB2, MLSSA, WINMLS ou SMAART LIVE (les utilisateurs de Mac peuvent utiliser Spectrafoo).

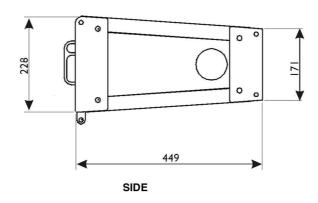
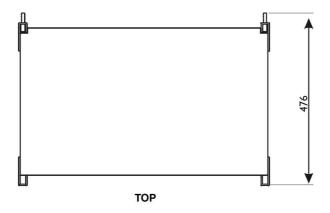
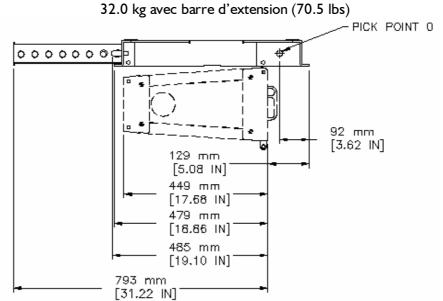
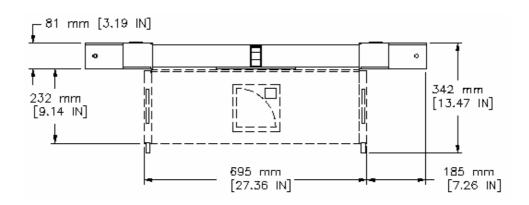


Figure 23: Outils recommandés pour l'installation du dV-DOSC



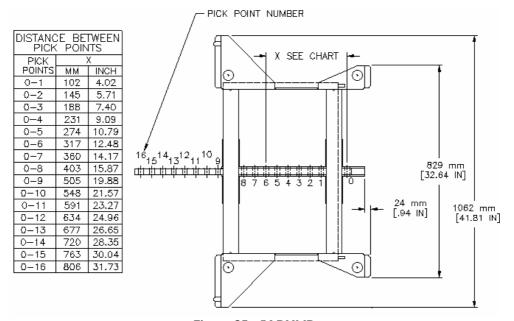
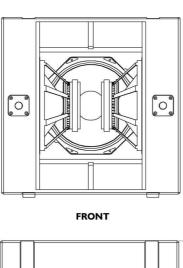
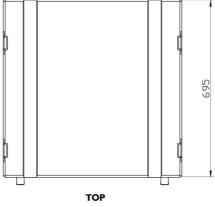
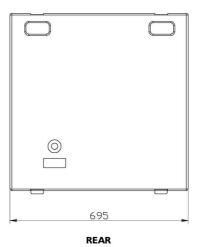


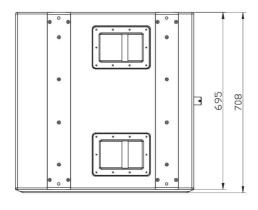

Figure 24: Enceinte dV-DOSC

dV-BUMP

Poids Net:

22.5 kg sans barre d'extension (49.6 lbs)


Figure 25: dV-BUMP

Manuel dV-DOSC dV-SUB Mai 2006 4 I

SIDE Figure 26: dV-SUB

SCALE 1:15

Pour le produit :

Nom : dV-DOSC™

Désignation : Enceinte acoustique

L-ACOUSTICS® dV-DOSC

Dimensions: 695 mm x 257 mm x 476 mm (L x H x P)

Matière : Multipli de bouleau de finlande

Capots en aluminium

Plaques d'accrochage en acier

Accessoires optionnels :

dV-ANGLEP1 – barre angulaire (0, 2, 3.75, 5.5, 7.5°) dV-ANGLEP2 – barre angulaire (1, 3, 4.5, 6.5°)

dV-ANGLEN - barre angulaire (0, -2, -3.75, -5.5, -7.5°)

dV-PIN25 - goupille d'accrochage rapide

Origine de fabrication :

Pays d'origine de la fabrication du produit : France
Pays d'origine de la fabrication de ses composants : CEE

Spécifications techniques particulières :

L'enceinte acoustique dV-DOSC est destinée à être suspendue sous la structure de levage dV-BUMP ou dV-BUMP2, ou à être posée sur la structure dV-BUMP ou dV-BUMP2. Le dV-DOSC peut également être suspendu sous le dV-SUB. Le tableau suivant indique le coefficient de sécurité quand le système dV-DOSC est utilisé conformément aux instructions décrites dans le manuel utilisateur dV-DOSC dV-SUB OPERATOR MANUAL. Version 2 ou ultérieure:

dV-DOSC	
Poids	32 Kg
CMU	768 daN
Coefficient de sécurité (rupture)	>5

L'ACOUSTICS 13, Rue Levacher - Cintrat Parc de la Fontaine de lauvence

13, Rue Levacher - Cintrat farc de la Fontaine de Jouvence P1462 Marcoussis - cedex france Tél : +33 (0)1 69 63 69 6

Tel: +33 (U)1 69 63 69 6.
Fax: +33 (U)1 69 63 69 6.
http://www.l-acoustics.com
e-mail: info@l-acoustics.com
S.A.S. au capital de 232 500 e
330 596 800 RCS EVR

8/2006 DCE-dVDOSC - page 1/2

Conformité aux standards

Les enceintes acoustiques dV-DOSC sont destinées à être suspendues uniquement à l'aide de la structure de levage dV-BUMP ou dV-BUMP2, conformément aux instructions publiées par L-ACOUSTICS.

24 dV-DOSC au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP ou dV-BUMP2 utilisé comme cadre de suspension utilisant 1 ou 2 points d'accrochage situés à l'intérieur du cadre du dV-BUMP/dV-BUMP2. 12 dV-DOSC au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP ou dV-BUMP2 utilisé comme cadre de suspension utilisant 1 point d'accrochage situé sur la barre d'extension du dV-BUMP/dV-BUMP2. 12 dV-DOSC au maximum peuvent être posés sur le dV-BUMP utilisé alors comme base d'empilage (en combinaison avec le BUMP2, se référer au manuel utilisateur pour les détails de cette configuration).

Des configurations mixtes avec le dV-SUB peuvent être réalisées. Se référer au manuel utilisateur pour la liste des configurations possibles.

Les enceintes dV-DOSC adjacentes sont reliées entre elles et à la structure dV-BUMP/dV-BUMP2 par les barres angulaires dV-ANGLEP1 et dV-ANGLEP2. Toutes les barres angulaires sont sécurisées par les goupilles en inox dV-PIN25.

Les ingénieurs L-ACOUSTICS ont conçu l'enceinte dV-DOSC en utilisant les technologies les plus récentes en matière de logiciels de conception et de calcul. Pour vérifier sa conception, la structure métallique du dV-DOSC a également été testée jusqu'à destruction sur un banc de traction équipé d'une cellule de mesure étalonnée en laboratoire.

L-ACOUSTICS déclare par la présente que le produit ci-dessus est conforme à :

- 1. Directive Machine 98/37/CE, chapitre 4 : Accessoires de Levage
- 2. Directive Basse Tension 73/23/CE (Standard harmonisé EN60065).

Fait à Marcoussis, le 21 septembre 2004

Signature du représentant L-ACOUSTICS

Jacques Spillmann Responsable Technique Production

08/2006 DCE-dVDOSC - page 2/2

Pour le produit :

Nom: dV-SUB

Désignation : Enceinte acoustique

L-ACOUSTICS® dV-SUB

Dimensions: 695 mm x 708 mm x 695 mm (L x H x P)

Matière : Multipli de bouleau de finlande

Plaques d'accrochage en acier

Accessoires :

dV-ANGLESS – barre angulaire dV-SUB / dV-SUB dV-ANGLESD – barre angulaire dV-SUB / dV-DOSCTM

ou dV-SUB / dV-BUMP(2)

dV-ANGLESDP – barre angulaire dV-SUB / dV-DOSC™

dV-PIN25 - goupille d'accrochage rapide

Origine de fabrication :

Pays d'origine de la fabrication du produit : France
Pays d'origine de la fabrication de ses composants : CEE

Spécifications techniques particulières :

L'enceinte acoustique dV-SUB est destinée à être suspendue sous la structure de levage dV-BUMP ou dV-BUMP2 ou à être posée au sol. Le tableau suivant indique le coefficient de sécurité quand le système dV-SUB est utilisé conformément aux instructions décrites dans le manuel utilisateur dV-DOSC dV-SUB OPERATOR MANUAL, Version 2 ou ultérieure :

dV-SUB	
Poids	93 Kg
CMU	850 daN
Coefficient de sécurité (rupture)	>8

L'ACOUSTICS

13, Rue Levacher - Cintrat Parc de la Fontaine de Jouvence 11462 Marcoussis - cedex France

(42: +3.3 (b)) 67 63 67 63 Fax: +3.3 (0)1 69 63 69 64 http://www.l-acoustics.com e-mail : info@l-acoustics.com S.A.S. au copital de 232 500 € 330 596 800 RCS EVRY TVA (VAI) : FR 4/330596800

18/2006 DCE-dVSUB - page 1/2

Conformité aux standards

Les enceintes acoustiques dV-SUB sont destinées à être suspendues uniquement à l'aide de la structure de levage dV-BUMP ou dV-BUMP2, conformément aux instructions publiées par L-ACOUSTICS.

6 dV-SUB au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP, utilisé comme cadre de suspension, en utilisant I ou 2 points d'accrochage situés à l'intérieur du cadre du dV-BUMP. La structure de levage dV-BUMP2 autorise la suspension de 9 dV-SUB au maximum dans les mêmes conditions

6 dV-SUB au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP ou dV-BUMP2 utilisé comme cadre de suspension utilisant I point d'accrochage situé sur la barre d'extension du dV-BUMP/dV-BUMP2.

Des configurations mixtes avec le dV-DOSC peuvent être réalisées. Se référer au manuel utilisateur pour la liste des configurations possibles.

Les enceintes dV-SUB sont reliées au dV-BUMP/dV-BUMP2 à l'aide des barres angulaires dV-ANGLESD. Les dV-SUB adjacents sont reliés entre eux à l'aides des barres angulaires dV-ANGLESS. Les dV-DOSC sont reliés aux dV-SUB à l'aide des barres angulaires dV-ANGLESD et dV-ANGLESDP. Toutes les barres angulaires sont sécurisées par les goupilles en inox dV-PIN25.

Les ingénieurs L-ACOUSTICS ont conçu l'enceinte dV-SUB en utilisant les technologies les plus récentes en matière de logiciels de conception et de calcul. Pour vérifier sa conception, la structure métallique du dV-SUB a également été testée jusqu'à destruction sur un banc de traction équipé d'une cellule de mesure étalonnée en laboratoire.

L-ACOUSTICS déclare par la présente que le produit ci-dessus est conforme à :

- I. Directive Machine 98/37/CE, chapitre 4 : Accessoires de Levage
- 2. Directive Basse Tension 73/23/CE (Standard harmonisé EN60065).

Fait à Marcoussis, le 21 septembre 2004

Signature du représentant L-ACOUSTICS

Jacques Spillmann Responsable Technique Production

08/2006 DCE-dVSUB - page 2/2

Manuel dV-DOSC dV-SUB Mai 2006 44

Pour le produit :

dV-BUMP Nom:

Désignation : Structure de levage pour enceintes

L-ACOUSTICS® dV-DOSC™ et dV-SUB

Dimensions: 1062 mm x 79 mm x 608 mm (L x H x P)

Matière : Acier

Fourni avec les accessoires suivants :

3 x Manille droite diamètre 18 mm CMU IT - CA MAN18

8 x Goupille attache rapide - CA DVPIN25

1 x Goupille attache rapide - CA DVPIN81

4 x Pièce angulaire - MC DVANGLPI I x Goupille - MC DVGOUP

I x Barre d'extension MC DVRAL

Origine de fabrication :

Pays d'origine de la fabrication du produit : France Pays d'origine de la fabrication de ses composants : CEE

Spécifications techniques particulières :

La structure de levage dV-BUMP est destinée à la suspension des enceintes dV-DOSC et dV-SUB. Le dV-BUMP peut également être utilisé comme plateforme pour les enceintes dV-DOSC. Le tableau suivant indique le coefficient de sécurité quand le système dV-DOSC est utilisé conformément aux instructions décrites dans le manuel utilisateur dV-DOSC dV-SUB OPERATOR MANUAL, Version 2 ou ultérieure :

dV-BUMP	Sans Barre d'Extension	Avec Barre d'Extension
Poids	23 Kg	32 Kg
CMU	768 daN	384 daN
Coefficient de sécurité (rupture)	>5	>4

L'ACOUSTICS

13, Rue Levacher - Cintrat Parc de la Fontaine de Jouvence

DCE-dVBUMP - page 1/2

Conformité aux standards

Les enceintes acoustiques dV-DOSC et dV-SUB sont destinées à être suspendues uniquement à l'aide de la structure de levage dV-BUMP ou dV-BUMP2, conformément aux instructions publiées par L-ACOUSTICS.

24 dV-DOSC au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP utilisé comme cadre de suspension utilisant I point d'accrochage situé à l'intérieur du cadre du dV-BUMP.

12 dV-DOSC au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP utilisé comme cadre de suspension utilisant I point d'accrochage situé sur la barre d'extension du dV-BUMP.

12 dV-DOSC au maximum peuvent être posés au sol sur le dV-BUMP utilisé alors comme base d'empilage (en combinaison avec le BUMP2, se référer au manuel utilisateur pour les détails de cette configuration).

Des configurations mixtes avec le dV-SUB peuvent être réalisées. Se référer au manuel utilisateur pour la liste des configurations possibles.

Les enceintes dV-DOSC adjacentes sont reliées entre elles et à la structure dV-BUMP/dV-BUMP2 par les barres angulaires dV-ANGLEP1 et dV-ANGLEP2. Les enceintes dV-SUB sont reliées à la structure dV-BUMP2 par les barres angulaires dV-ANGLESD et dV-ANGLESDP. Toutes les barres angulaires sont sécurisées par les goupilles en inox dV-PIN25.

Les ingénieurs L-ACOUSTICS ont conçu la structure de levage dV-BUMP en utilisant les technologies les plus récentes en matière de logiciels de conception et de calcul. Pour vérifier sa conception, la structure de levage dV-BUMP a également été testée jusqu'à destruction sur un banc de traction équipé d'une cellule de mesure étalonnée en laboratoire.

L-ACOUSTICS déclare par la présente que le produit ci-dessus est conforme à :

- 1. Directive Machine 98/37/CE, chapitre 4 : Accessoires de Levage
- 2. Règles pour le Calcul des Appareils de Levage, Fédération Européenne de la Manutention (FEM 1.001).

Fait à Marcoussis, le 21 septembre 2004

Signature du représentant L-ACOUSTICS

Jacques Spillmann Responsable Technique Production

08/2006 DCE-dVBUMP - page 2/2

45 Manuel dV-DOSC dV-SUB Mai 2006

Pour le produit :

dV-BUMP2 Nom

Désignation : Structure de levage pour enceintes

L-ACOUSTICS® dV-DOSC™ et dV-SUB

Dimensions: 693 mm x 73 mm x 541 mm (L x H x P)

Matière : Acier à Haute Limite Elastique

Barre d'extension en Aluminium

Fourni avec les accessoires suivants :

3 x Manille droite diamètre 18 mm CMU IT - CA MAN18

8 x Goupille attache rapide – CA DVPIN25

4 x Pièce angulaire - MC DVANGLPI

I x Barre d'extension MC DVRALET

Origine de fabrication :

Pays d'origine de la fabrication du produit : France CEE Pays d'origine de la fabrication de ses composants :

Spécifications techniques particulières :

La structure de levage dV-BUMP2 est destinée à la suspension des enceintes dV-DOSC et dV-SUB. Le dV-BUMP2 peut également être utilisé comme plateforme pour les enceintes dV-DOSC. Le tableau suivant indique le coefficient de sécurité quand le système dV-DOSC est utilisé conformément aux instructions décrites dans le manuel utilisateur dV-DOSC dV-SUB OPERATOR MANUAL, Version 2 ou ultérieure :

dV-BUMP2	Sans Barre d'Extension	Avec Barre d'Extension
Poids	12.5 Kg	15.8 Kg
CMU	855 daN	570 daN
Coefficient de sécurité (rupture)	>8	>4

L'ACOUSTICS

13, Rue Levacher - Cintrat Parc de la Fontaine de Jouvence 91462 Marcoussis - cedex

DCE-dVBUMP2 - page 1/2

Conformité aux standards

Les enceintes acoustiques dV-DOSC et dV-SUB sont destinées à être suspendues uniquement à l'aide de la structure de levage dV-BUMP ou dV-BUMP2, conformément aux instructions publiées par L-ACOUSTICS.

24 dV-DOSC au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP2 utilisé comme cadre de suspension utilisant 1 ou 2 points d'accrochage situés à l'intérieur du cadre du dV-BUMP2.

12 dV-DOSC au maximum, formant une rangée verticale, peuvent être suspendus sous le dV-BUMP2 utilisé comme cadre de suspension utilisant I point d'accrochage situé sur la barre d'extension du dV-BUMP2.

6 dV-DOSC au maximum peuvent être fixée au dessus du dV-BUMP2 à condition que la charge totale du système n'excède pas la Charge Maximale Utile du dV-

Des configurations mixtes avec le dV-SUB peuvent être réalisées. Se référer au manuel utilisateur pour la liste des configurations possibles.

Les enceintes dV-DOSC adjacentes sont reliées entre elles et à la structure dV-BUMP/dV-BUMP2 par les barres angulaires dV-ANGLEP1 et dV-ANGLEP2. Les enceintes dV-SUB sont reliées à la structure dV-BUMP2 par les barres angulaires dV-ANGLESD et dV-ANGLESDP. Toutes les barres angulaires sont sécurisées par les goupilles en inox dV-PIN25.

Les ingénieurs L-ACOUSTICS ont conçu la structure de levage dV-BUMP2 en utilisant les technologies les plus récentes en matière de logiciels de conception et de calcul. Pour vérifier sa conception, la structure de levage dV-BUMP2 a également été testée jusqu'à destruction sur un banc de traction équipé d'une cellule de mesure étalonnée en laboratoire.

L-ACOUSTICS déclare par la présente que le produit ci-dessus est conforme à :

- 1. Directive Machine 98/37/CE, chapitre 4 : Accessoires de Levage
- 2. Règles pour le Calcul des Appareils de Levage, Fédération Européenne de la Manutention (FEM 1.001).

Fait à Marcoussis, le 21 septembre 2004

Signature du représentant L-ACOUSTICS

Jacques Spillmann Responsable Technique Production

08/2006 DCE-dVBUMP2 - page 2/2

Manuel dV-DOSC dV-SUB Mai 2006 46

L-ACOUSTICS

13. Rue Levechre - Cintrat
Parc de la Fontaire de Jouence
91462 Marcousis - cedor
Fronce 37 01/9 6 3 6 9 63
781: +33 (0) 1 69 6 3 69 64
http://www.l-ocoustics.com
e-mail : in@@i-coustics.com
5.A.S. au cejeria de 23 90 €
330 596 800 RSS 5W7
FWA (VAD) : FR 41330596800

DECLARATION DE CONFORMITE CE

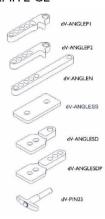
Pour le produit :

Nom : BARRES ANGULAIRES dV-DOSC™: dV-ANGLEP1 (0, 2, 3.75, 5.5, 7.5°)

dV-ANGLEP2 (1, 3, 4.5, 6.5°) dV-ANGLEN (0, -2, -3.75, -5.5, -7.5°)

BARRES ANGULAIRES dV-SUB :

dV-ANGLESS dV-ANGLESD dV-ANGLESDP


dV-PIN25 - goupille d'accrochage rapide

Désignation : Accessoires pour le système

L-ACOUSTICS® dV-DOSC / dV-SUB

Matière : Acier (BARRES)

Inox traité (GOUPILLE)

Origine de fabrication :

Pays d'origine de la fabrication du produit : France
Pays d'origine de la fabrication de ses composants : CEE et USA

Spécifications techniques particulières :

Limite à la rupture*	
BARRES ANGULAIRES dV-DOSC	>2200 daN
BARRES ANGULAIRES dV-SUB	>3500 daN
GOUPILLE ACCROCHAGE	>9000 daN

^{*} obtenue par essai destructif sur un banc de traction équipé d'une cellule de mesure étalonnée en laboratoire.

Conformité aux standards

L-ACOUSTICS déclare par la présente que le produit ci-dessus est conforme à :

1. Directive Machine 98/37/CE, chapitre 4 : Accessoires de Levage

Fait à Marcoussis, le 21 septembre 2004

Signature du représentant L-ACOUSTICS

Jacques Spillmann

Responsable Technique Production

08/2006 DCE-DVANGLES - page 1/I

47